A REMARK ON AN AREALLY MEAN *p*-VALENT FUNCTION

BY

DOV AHARONOV

ABSTRACT

We bring an example which shows that in a theorem due to Cartwright, Spencer and Hayman concerning areally mean *p*-valent functions a multiplicative constant cannot be reduced to 1. (This is possible in the corresponding theorem for circumferentially mean *p*-valent functions).

We first recall the following definition [1]. Suppose that

$$f(z) = a_0 + a_1 z + a_2 z^2 + \cdots$$

is regular and not zero in |z| < 1. Denote by D the domain on which |z| < 1 is mapped by the function f(z). Denote by W(R) the area (counted with the appropriate multiplicity) of that part of D which is enclosed in the circle $|w| \leq R$.

A function f(z) for which $W(R) \leq p \cdot \pi R^2$ for every positive R is said to be areally mean p valent. (a.m.p.v.). We also recall the following theorem: Suppose that f(z) is an a.m.p.v function and not zero in |z| < 1 Then we have [1]:

(1)
$$\frac{|a_0|}{c} \left(\frac{1-|z|}{1+|z|}\right)^{2p} < |f(z)| < |a_0| c \left(\frac{1+|z|}{1-|z|}\right)^{2p}$$
, $0 < |z| < 1$,

where $c = e^{2\pi p + 1/2}$

Our aim is now to show the following

THEOREM 1. Suppose that for every function $f(z) = a_0 + a_1 z + a_2 z^2 + \cdots$ a.m.p.v. and not zero in |z| < 1, we have the following relation:

(2)
$$\frac{|a_0|}{d_2 e^{m_2 p}} \cdot \left(\frac{1-|z|}{1+|z|}\right)^{2p} < |f(z)| < |a_0| d_1 e^{m_1 p} \left(\frac{1+|z|}{1-|z|}\right)^{2p}, 0 < |z| < 1,$$

then it follows that $d_1, d_2 \ge 2/\sqrt{e}$.

Proof. The inequality $d_1 \ge 2/\sqrt{e}$ will be shown with the aid of the function

$$f(z) = k + \log\left(1 + \frac{1+z}{1-z}\right), \ k > 0.$$

Received December 28, 1967.

We have: Re $f(z) \ge k$, $|\operatorname{Im} f(z)| < \pi/2$.

Clearly f(z) is univalent. Thus the area of the part of the image of |z| < 1 by f(z) which lies over |w| < R, does not exceed the area of the rectangle $|v| < \pi/2$, k < u < R, i.e. $\pi(R - k)$. Since

$$\frac{\pi(R-k)}{\pi R^2} \leq \frac{1}{4k} \qquad k \leq R < \infty,$$

f(z) is mean *p*-valent, with p = 1/4k. Thus we have from (2):

(3)
$$\frac{\left|k + \log\left(1 + \frac{1+z}{1-z}\right)\right|}{k + \log 2} < d_1 e^{m_1/4k} \left(\frac{1+|z|}{1-|z|}\right)^{1/2k}$$

We now choose z such that 0 < z < 1 and $(1 + z/1 - z) = e^k$. Then from (3) we have:

(4)
$$\frac{k + \log(1 + e^k)}{k + \log 2} < d_1 e^{m_1/4k} e^{1/2}.$$

If now $k \to \infty$, we get from (4): $2 \leq d_1 e^{1/2}$.

For the proof of the second inequality we define:

$$f(z) = k + \log\left(l + \frac{1+z}{1-z}\right), k, l > 0, k + \log l > 0.$$

By similar considerations to the first case, the function f(z) is a.m.p.v. for $p = 1/(4(k + \log l))$ and we may use (2) for this value of p. So:

$$\frac{\left|k + \log\left(l + \frac{1+z}{1-z}\right)\right|}{k + \log(l+1)} > \frac{1}{d_2 e^{m_2/4t}} \left(\frac{1-|z|}{1+|z|}\right)^{1/2t} \quad \text{where } t = k + \log l.$$

We now take -1 < z < 0, and set u = (1 + |z|/1 - |z|). Then:

(5)
$$d_2 > \frac{t + \log(1 + 1/l)}{e^{m_2/4t}u^{1/2t}[t + \log(1 + 1/ul)]}$$

If, in particular, $1/l = u = e^t$, we get:

(6)
$$d_2 > \frac{t + \log(1 + e^t)}{e^{m_2/4t}e^{1/2}(t + \log 2)}$$

If now $t \to \infty$, we have $d_2 \ge 2/\sqrt{e}$, and the proof is complete.

Reference

1. Hayman, W. K. Multivalent functions 1st ed., Cambridge University Press (1958).

TECHNION-ISRAEL INSTITUTE OF TECHNOLOGY, HAIFA